Weak amenability of (2N)-th dual of a Banach algebra

Authors

  • M. Ettefagh Department of Mathematics, Tabriz Branch, Islamic Azad University, Tabriz, Iran
  • S. Houdfar Department of Mathematics, Tabriz Branch, Islamic Azad University, Tabriz, Iran
Abstract:

In this paper by using some conditions, we show that the weak amenability of (2n)-th dual of a Banach algebra A for some $ngeq 1$ implies the weak amenability of A.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

$(-1)$-Weak Amenability of Second Dual of Real Banach Algebras

Let $ (A,| cdot |) $ be a real Banach algebra, a complex algebra $ A_mathbb{C} $ be a complexification of $ A $ and $ | | cdot | | $ be an algebra norm on  $ A_mathbb{C}  $  satisfying a simple condition together with the norm $ | cdot | $ on $ A$.  In this paper we first show that $ A^* $ is a real Banach $ A^{**}$-module if and only if $ (A_mathbb{C})^* $ is a complex Banach $ (A_mathbb{C})^{...

full text

amenability of banach algebras

chapters 1 and 2 establish the basic theory of amenability of topological groups and amenability of banach algebras. also we prove that. if g is a topological group, then r (wluc (g)) (resp. r (luc (g))) if and only if there exists a mean m on wluc (g) (resp. luc (g)) such that for every wluc (g) (resp. every luc (g)) and every element d of a dense subset d od g, m (r)m (f) holds. chapter 3 inv...

15 صفحه اول

Weak and $(-1)$-weak amenability of second dual of Banach algebras

For a Banach algebra $A$, $A''$ is $(-1)$-Weakly amenable if $A'$ is a Banach $A''$-bimodule and $H^1(A'',A')={0}$. In this paper, among other things,  we study the relationships between the $(-1)$-Weakly amenability of $A''$ and the weak amenability of $A''$ or $A$. Moreover, we show that the second dual of every $C^ast$-algebra is $(-1)$-Weakly amenable.

full text

2n-Weak module amenability of semigroup algebras

‎Let $S$ be an inverse semigroup with the set of idempotents $E$‎. We prove that the semigroup algebra $ell^{1}(S)$ is always‎ ‎$2n$-weakly module amenable as an $ell^{1}(E)$-module‎, ‎for any‎ ‎$nin mathbb{N}$‎, ‎where $E$ acts on $S$ trivially from the left‎ ‎and by multiplication from the right‎. ‎Our proof is based on a common fixed point property for semigroups‎.  

full text

Homomorphism Weak amenability of certain Banach algebras

In this paper we introduce the notion of $varphi$-commutativity for a Banach algebra $A$, where $varphi$ is a continuous homomorphism on $A$ and study the concept of $varphi$-weak amenability for $varphi$-commutative Banach algebras. We give an example to show that the class of $varphi$-weakly amenable Banach algebras is larger than that of weakly amenable commutative Banach algebras. We charac...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 01  issue 02

pages  55- 65

publication date 2012-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023